

Notes / Domino

Parsing and extracting content from

Embedded OLE objects

Technical Guide

Version 2.04

Author: Alex Elliott

© AGECOM 2020

https://www.agecom.com.au

https://www.agecom.com.au/

CONTENTS

Introduction ... 3

About the Author ... 3

Notes OLE Objects ... 4

How OLE Objects are Stored in Notes .. 6

OLE/1 Objects ... 6

OLE/2 Objects ... 7

The Structure of an OLE/2 Object ... 9

Header sector .. 10

DIFAT Sector Chain .. 11

FAT Sector Chain .. 11

Directory Sector Chain .. 12

Mini FAT Sector Chain .. 13

User Defined Data Chains ... 13

Summary ... 13

Extracting an OLE/1 object ... 14

Extracting an OLE/2 object ... 15

Special Values in the Compound File ... 17

Parsing the OLE/2 File .. 18

Open the File ... 18

Read the header .. 18

Read All Sectors .. 19

Parse DIFAT Sectors ... 20

Parse each Sector in the DIFAT .. 20

Retrieve the Directory Entries .. 21

Parse the Mini-FAT Sectors .. 23

Extract the Content .. 24

Summary ... 25

Notes OLE File Parser Sample Application .. 26

Using the Sample Application .. 26

Design Elements in the Sample Application .. 30

CompoundFileParser Class ... 31

Adding the OLE Parsing design elements to your own applications ... 36

Known Issues .. 37

INTRODUCTION

This article provides a detailed and easily understandable description of Notes Object Linking & Embedded

(OLE) objects / files. Content covered in this article includes the structure of OLE objects, how to parse

them, and how to extract the usable / editable content from them.

The information and steps covered in this guide were performed using Notes version 9.0.1 running on

Microsoft Windows 10. The information may or may not be applicable to other versions of Notes and

platforms however should at the very least provide some guidance.

A sample Notes application called Notes OLE File Parser is available from the AGECOM website at:

https://www.agecom.com.au/OLEFileParser

The application contains an agent and script libraries which handle all the steps of extracting an OLE object

from a Notes document, parsing it, and extracting the embedded content to a file that can be used. The

design elements may be copied from the sample application into your own applications. More information

regarding the sample application can be found in this guide.

ABOUT THE AUTHOR

This article and the design elements for processing OLE objects were written by Alex Elliott of AGECOM.

Alex has been working with Notes since version 3 and is one of the world’s experts in migration and

transformation of data in and out of Notes. He also has an extensive background in programming

languages such as C, Java, JavaScript, LotusScript and more, as well as extensive experience in

application and network security. He has developed commercial Notes / Domino applications which are

used by companies all around the world.

https://www.agecom.com.au/OLEFileParser

NOTES OLE OBJECTS

OLE objects stored in Notes documents are a special type of attachment containing embedded data from

other applications.

The content for OLE objects may either be embedded (contained within the OLE object itself) or linked

(where the content is contained in an externally stored file). Linked objects all point to the same source

data so any updates performed on a linked object update the centrally linked file – this also requires end

users to be able to access the linked file. Embedded objects have the full content stored within the object

itself (and the object is stored in the Notes document) and can therefore be updated by anyone with edit

access rights to the document.

The application used to create or update the content is stored within the OLE object by way of a Class id.

The class id points to the application via the Windows registry. Therefore when you edit an OLE object from

within Notes the associated application is launched and the content is loaded into the application.

The following diagram shows the class id for the Word.Document.6 class is:

{00020900-0000-0000-C000-000000000046}

The path and filename of the application to load for this class is found under the Server Key:

Notes supports the embedding of files as OLE/1 or OLE/2 objects. For platforms that support OLE the files

are embedded as OLE/2 objects and for all other platforms as OLE/1 objects. If calling the EmbedObject

method from Java the files are stored as OLE/1 objects. OLE objects created in Notes 3.x or earlier are

also stored in OLE/1 format.

OLE/1 objects are typically stored in Notes documents under a single $File item with a file attachment with

a .ole extension (example: ole12345.ole).

OLE/2 objects are typically stored in Notes documents under multiple $File items – one $File item

containing a file with a prefix of ‘EXT’ (eg. EXT82641) and one or more other $File items containing files

with a prefix of ‘STG’ (eg. STG45298). There is also an additional $OLEOBJINFO item containing

information about the OLE object.

This document is primarily concerned with OLE/2 objects. The CompoundFileParser class in the sample

application detects if the object being processed is an OLE/1 or OLE/2 file and will process it accordingly.

The structure of Notes OLE objects is based upon the Microsoft Compound Binary File Format (also known

as the Microsoft Compound Document File Format). This format defines how the data in an OLE file should

be organised. The format is very similar to the Windows filesystem whereby you have a top-level Header

sector, file allocation tables (FAT), directory entries, files, and finally the content within those files.

There are two versions of the Compound Document File structure – version 3 and version 4. Version 3

files have a maximum file size of 2 gigabytes and version 4 can grow to as large as 16 terabytes. Most

Notes OLE objects are stored in version 3 format.

HOW OLE OBJECTS ARE STORED IN NOTES

OLE objects are stored in Notes documents as outlined below

OLE/1 OBJECTS

When an OLE/1 object is created in a Notes document a filename is assigned to the object in the format of

‘OLE12345.OLE’. The numeric part of the filename is randomly generated.

For each OLE/1 object stored in a Notes document the following actions are performed:

• The rich text field contains an icon for the object and a pointer to the single $FILE item which

contains the attachment content.

• An item named ‘$FILE’ is created for the OLE object (pointed to by the rich text item).

The internal structure of an OLE/1 object when viewed using NotesPeek looks like the following:

The pointer in the rich text field to the OLE object when viewed using NotesPeek looks like the following:

There may or may not be a class associated with the pointer. If the class is not found in the pointer it can

be obtained from the OLE object itself.

OLE/2 OBJECTS

When an OLE/2 object is created in a Notes document a filename is assigned to the object in the format of

‘EXT12345’. The filename always begins with ‘EXT’ with the numeric part of the name being randomly

generated.

For each OLE/2 object stored in a Notes document the following actions are performed:

• The rich text field contains an icon for the object and a pointer to the master OLE file object ($FILE

item which has an attachment name in the format of EXT12345)

The following screenshot shows the OLE object pointer for a rich text field when viewed using

NotesPeek:

• An item named ‘$OLEOBJINFO‘ is created. One of these items is created for each OLE object

embedded in the document. This item enables quicker access to OLE objects without having to

parse each rich text item looking for OLE objects.

The following screenshot shows the structure of the $OLEOBJINFO item when viewed using

NotesPeek:

As you can see from the above information the master pointer to the OLE object is stored in a

$FILE object called EXT46539 and the pointer to the object is stored in the rich text field called

Body.

• An item named ‘$FILE’ is created for the master file pointer for the OLE object (pointed to by the

rich text item). This item in turn contains the names of other $FILE items which contain the full

content of the OLE object (see following point).

The following screenshot shows the internal structure of the OLE object master file item. You can

see in the image the names of the $FILE items which make up the complete object (ie. STG50997,

STG18184, etc).

• One or more additional $FILE items are created which contain the complete data for the OLE

object. The name of the attachment in each item is in the format of STG12345 (where STG is an

abbreviation for Storage Format). Each $FILE item is about 65Kb in size.

THE STRUCTURE OF AN OLE/2 OBJECT

As mentioned previously Notes OLE/2 objects are based on the Microsoft Compound File structure. All

data within the file is stored in Sectors. The size of each sector varies according to the version of the

compound file. For version 3 the sector size is 512 bytes and for version 4 it is 4,096 bytes.

The basic structure of compound file is shown in the below diagram.

HEADER SECTOR

The header sector begins at the first byte of the file and the content of the header occupies 512 bytes. If the

compound file is version 4 the header sector is padded out to 4,096 bytes with zeros. The settings found in

the header sector are:

• Signature – A specific sequence of bytes that identifies the file as being a compound structure file.

(8 bytes)

• CLSID – Not used and must be set to all zeros. (16 bytes)

• Minor Version – The minor (point) version of the file. Should be set to 0x003E if the major version

of the file is either 3 or 4. (2 bytes)

• Major Version – The major version of the file. Must be either 3 or 4. (2 bytes)

• Byte Order – Indicates the byte order for all integer fields. Must be set to 0xFFFE which indicates

Little-Endian order. (2 bytes)

• Sector Shift – Specifies the size of sectors in the file as a power of 2. If the major version is 3 then

this should be 9 (0x0009) and if the major version is 4 this should be 12 (0x000C). For version 3, 2

to the power of 9 is 512 (indicating each sector is 512 bytes) and for version 4, 2 to the power of

12 is 4,096 (indicating each sector is 4,096 bytes). (2 bytes)

• Mini Sector Shift – Specifies the size of sectors in the mini stream. This should be 6 (0x006). 2 to

the power of 6 is 64 indicating each sector is 64 bytes. (2 bytes)

• Reserved – not used. (6 bytes)

• Number of Directory Sectors – Indicates the number of directory sectors in the compound file.

This field is not applicable to version 3 files in which case it should be set to all zeros. (4 bytes)

• Number of FAT Sectors – The number of FAT Sectors in the file. (4 bytes)

• First Directory Sector Location – The starting sector number for the directory stream. (4 bytes)

• Transaction Signature Number - This integer field MAY contain a sequence number that is

incremented every time the compound file is saved by an implementation that supports file

transactions. Will be set to all zeroes if file transactions are not implemented. (4 bytes)

• Mini Stream Cutoff Size - Specifies the maximum size of a user-defined data stream that is

allocated from the mini FAT and mini stream, and that cutoff is 4,096 bytes (0x00001000). Any

user-defined data stream that is greater than or equal to this cutoff size must be allocated as

normal sectors from the FAT. (4 bytes)

• First Mini FAT Sector Location – The starting sector number for the mini FAT. (4 bytes)

• Number of Mini FAT Sectors – The number of mini FAT sectors in the file. (4 bytes)

• First DIFAT Sector Location – The starting sector number for the double-indirect file allocation

table (DIFAT) – which is basically a directory for navigating FAT sectors. This is only applicable if

the file is 6.875Mb or larger. (4 bytes)

• Number of DIFAT Sectors – The count of the number of DIFAT sectors in the file. (4 bytes)

• DIFAT - An array of 32-bit integer fields contains the first 109 FAT sector locations of the

compound file. (436 bytes)

DIFAT SECTOR CHAIN

The DIFAT (double-indirect file allocation table) is a sector that contains an array of integers (up to 109

integers) which point to sectors that have been allocated for the FAT (file allocation table).

For example the first 4 numbers retrieved from this sector might be: 3, 5, 6, 10. When parsing the file we

would first read the data from sector 3, then sector 5, then 6, and then 10. For each FAT sector all fields

are traversed to build up a map of location (sector) sequences for various content within the file.

For files that contain more than 109 sectors (files which are 6.875Mb or larger) the DIFAT is also stored in

DIFAT sectors. The starting DIFAT sector is obtained from the header. Each field in the DIFAT sector

represents a FAT sector to navigate to for the file content. If there are no further FAT sectors to navigate to

the field will be set to ‘Free sector’.

The last field in the DIFAT sector points to the next DIFAT sector to navigate to or will be set to ‘End Of

Chain’ if there are no further DIFAT sectors.

FAT SECTOR CHAIN

For each FAT sector that is obtained from the DIFAT Sector Chain the following operations are performed:

• Iterate over all fields within the FAT sector

Each field occupies 4 bytes therefore the number of fields in each sector is determined by dividing

the sector size by 4. For a version 3 file this is 512 divided by 4 which equals 128. For a version 4

file this is 4,096 divided by 4 which equals 1,024.

• For each field record the value

This value will be one of the following values:

o Free Sector

o FAT Sector

o Next Sector Number

o End of Chain.

The main value we are interested in is ‘Next Sector Number’. Since content within the file can be

spread across multiple sectors by building up the chain of ‘Next Sectors’ it gives us a complete

map of the sectors we need to iterate and combine to assimilate the full content.

The ‘End of Chain’ value indicates where the data for the specific content in the file ends.

For a version 3 compound file each sector occupies 512 bytes. For a version 4 compound file each sector

occupies 4.096 bytes.

DIRECTORY SECTOR CHAIN

This sector contains an array of Directory Entry structures. Directories contain information about the

stream and storage objects in a compound file. The stream is the set of sectors containing the content we

are wanting to extract. For an OLE object that contains a Microsoft Word Document the stream is the

actual contents of the Word Document.

Each directory entry is identified by a non-negative number that is called the stream ID with the starting

directory number being zero. The first sector of the directory sector chain MUST contain the root storage

directory entry as the first directory entry.

Directory entries for Notes OLE files appear in the following order:

0. Root Entry - the root parent for child directory entries and also contains the size and starting sector

for the mini stream (applicable when the content to be extracted is less than the mini-stream size

of 4.096 bytes)

1. The name of this directory is usually related to the application class of the content contained within

the file, for example: Word.Document.12. This directory entry contains a pointer to the ‘Stream’

directory entry.

2. Stream directory – this directory entry contains the starting sector number for the content that we

want to extract (example Word document) and the size of the content to be extracted in bytes

(applicable when the content to be extracted is equal to or greater than the mini-stream size of

4,096 bytes). The name of this directory might be ‘Package’ or ‘Ole10Native’.

3. A directory entry called ‘CompObj’ which contains additional information about the content in the

file. It contains the starting sector location and size in byte of this information.

There may be other directory entries but in my experience these directory entries appear in most OLE files

that have been examined.

Note: if the stream directory entry is called ‘Ole10Native’ it indicates that the content of the stream is itself

another structure that we need to parse once obtained. This is covered though later in this document.

Information contained in directory entries that are of importance are:

• Directory Entry Name – name of the directory

• Directory Type – can be any of the following: Unknown, Storage Object, Stream Object, Root

Storage.

• Child ID – the id of the directory to navigate to from this directory.

• CLSID – the class identifier of the application that is used to open and edit the content of the OLE

object.

• Creation Time – the date / time the content was created

• Modified Time – the date / time the content was last updated

• Starting Sector Location – the sector number to begin from for extracting the object content.

• Stream Size – the size in bytes of the content.

MINI FAT SECTOR CHAIN

The Mini FAT Sector Chain is similar to a standard FAT Sector Chain except each Mini FAT Sector

occupies only 64 bytes. This makes the storage more efficient instead of using the larger FAT Sectors and

wasting space.

Mini FAT Sectors are used when the content stored in the compound file is less than 4,096 bytes.

The starting sector number that contains the Mini FAT sectors is obtained from the header of the file.

The starting Mini FAT sector (within the total Mini FAT sector chain) is obtained from the Root Storage

directory entry.

USER DEFINED DATA CHAINS

User defined data chains are additional areas within the compound file mainly used by the vendor (ie. IBM /

Notes Client) to store vendor-specific data. We do not need to worry about these for extracting the content.

SUMMARY

Now that the structure of a compound file has been explained we can summarise the steps required to

parse the file and extract the content:

• Open the file in binary format

• Read the header (first 512 bytes of the file) and get the settings for the structure of the file

• Read all sectors

• Parse all FAT sectors as specified in the double-indirect file allocation table (DIFAT)

• Parse the directory entries

• Parse any Mini FAT sectors

• Build the FAT sector and Mini FAT sector chains

• Locate the directory entry for the stream data and get the starting sector, and stream size

• Retrieve the stream data

• Process the retrieved stream data as required (eg. write it out to a file).

The above steps are described in more detail in this guide.

EXTRACTING AN OLE/1 OBJECT

The easiest way that has been found to extract the content from OLE/1 objects is to use the

NotesDXLExporter class.

The steps are as follows:

• Use the NotesDXLExporter class to get the DXL code for the document containing the OLE object

and stream the output to the NotesDOMParser class.

• Get the NotesDOMDocumentNode property from the NotesDOMParser class

• Iterate over all items in the NotesDOMDocumentNode object looking for $FILE nodes.

• For each $FILE node check if the ‘name’ attribute matches the ole object name.

• When the matching $FILE node has been found get the child ‘filedata’ node and get all the data

under the node. This is the binary data for the ole object encoded in base64 format.

• Create 2 NotesStream objects – one for output (opening a new file object as binary – this will be a

temporary file so should be given a temporary filename) and one for input.

• Write the retrieved data to the input stream (using the WriteText method)

• Create a new NotesDocument object and create a NotesMIMEEntity item in the document

• Call the SetContentFromBytes method in the NotesMIMEEntity item and set the input stream

object as the input.

• Call the GetContentFromBytes method in the NotesMIMEEntity item and set the output stream

object as the output.

• Call the DecodeContent method in the NotesMIMEEntity item.

• Close the input stream object.

• Create a new NotesStream object and open a new file object for binary output. This will be the

target file with the extracted content so should be given the preferred final filename.

• Read through the original output stream byte by byte looking for the byte which has value ‘D0’ (208

in decimal). This byte indicates where the start of the ole content begins. Write this byte to the

target output stream.

• Write the rest of the data in the original output stream to the target output stream.

• Close the original output stream and close the target output stream.

• Delete the temporary file created from the original output stream.

That’s it! The file that has been created contains the extracted content and can be used as a normal file.

OLE objects stored in a Notes document whose filename ends with .ole are typically extracted using this

method:

EXTRACTING AN OLE/2 OBJECT

The first step in extracting the content from the OLE/2 object is to extract it from the Notes document and

save it to the file system. We can easily do this by making a call to a Notes C API function called

‘NSFNoteExtractOLE2Object’ from LotusScript

The API function call requires the following arguments to be passed to it:

• A handle to the Notes document containing the OLE object

• The internal name of the OLE object

• The target folder / filename to save the OLE object to

• The encryption key for the document

• A Boolean value to indicate if any existing target file should be overwritten

• Additional flags (currently not used)

The function can be declared in LotusScript as:

Const LIB_W32 = "nnotes.dll"

Declare Function W32_NSFNoteExtractOLE2Object Lib LIB_W32 Alias "NSFNoteExtractOLE2Object"

(ByVal hNote As Long, ByVal pszObjectName As LMBCS String, ByVal pszFileName As LMBCS String,

pEncryptionKey As ENCRYPTION_KEY, ByVal fOverwrite As Long, ByVal dwFlags As Long) As Integer

We also need to declare the ENCRYPTION_KEY object as such:

Type ENCRYPTION_KEY

 Byte1 As Byte

 Word1 As Integer

 Text (16-1) As Byte

End Type

The following sample code demonstrates calling the C-API function to extract an OLE object with a name of

‘EXT12345’ from the selected Notes document and saving it to a file called ‘EXT12345.ole’ in the ‘C:\Temp’

folder on the filesystem.

Option Public

Option Declare

' Global Declarations

Const LIB_W32 = "nnotes.dll"

Type ENCRYPTION_KEY

 Byte1 As Byte

 Word1 As Integer

 Text (16-1) As Byte

End Type

Declare Function W32_NSFNoteExtractOLE2Object Lib LIB_W32 Alias "NSFNoteExtractOLE2Object" (_

 ByVal hNote As Long, _

 ByVal pszObjectName As LMBCS String, _

 ByVal pszFileName As LMBCS String, _

 pEncryptionKey As ENCRYPTION_KEY, _

 ByVal fOverwrite As Long, _

 ByVal dwFlags As Long) As Integer

Sub Initialize

 Dim Session As New NotesSession

 Dim Doc As NotesDocument

 Dim Status As Integer

 Dim Key As ENCRYPTION_KEY

 ' Error Handler

 On Error GoTo Error_Handler

 Set Doc = Session.DocumentContext

 Status = W32_NSFNoteExtractOLE2Object(Doc.Handle, "EXT12345", "c:\temp\EXT12345.ole", Key, 1, 0)

 Exit Sub

Error_Handler:

 Print "Error on line " & Trim(CStr(Erl)) & ": " & Error$ & " (" & Trim(CStr(Err)) & ")"

 Exit Sub

End Sub

The value returned to ‘Status’ from the API function call indicates the success or failure of the call. A value

of zero indicates success. Any other value indicates the error code relating to the error that occurred in the

call – you can get the description of the error message by making a call to the C-API function called

‘OSLoadString’ and passing the value in Status for the string to be loaded.

SPECIAL VALUES IN THE COMPOUND FILE

Special values are used in the compound file to indicate things such as types of objects / sectors, where

the iteration through sectors, streams and fields end and more. These values are retrieved by reading the

appropriate bytes in a sector and performing the conversion of the byte values to the corresponding

decimal values.

Constant Name Description Binary / Decimal Value

REGSECT Regular sector number 0x00000000 - 0xFFFFFFF9

0 - 4294967289

MAXREGSECT Maximum regular sector
number

0xFFFFFFFA

4294967290

DIFSECT Specifies a DIFAT sector 0xFFFFFFFC

4294967292

FATSECT Specifies a FAT sector 0xFFFFFFFD

4294967293

ENDOFCHAIN End of a linked chain of
sectors.

0xFFFFFFFE

4294967294

FREESECT Specifies an unallocated
sector in the FAT, Mini FAT,
or DIFAT.

0xFFFFFFFF

4294967295

REGSID Regular stream ID to identify
the directory entry.

0x00000000 through
0xFFFFFFF9

0 – 4294967289

MAXREGSID Maximum regular stream ID. 0xFFFFFFFA

4294967290

NOSTREAM Terminator or empty pointer 0xFFFFFFFF

4294967295

DIRECTORY_TYPE_UNALLOCATED Unknown or unallocated
Directory

0x00

0

DIRECTORY_TYPE_STORAGE Storage Object 0x01

1

DIRECTORY_TYPE_STREAM Stream Object 0x02

2

DIRECTORY_TYPE_ROOT Root Storage Object 0x05

5

The above values are referred to over the following pages in the parsing of the file.

PARSING THE OLE/2 FILE

Now that the OLE/2 object has been extracted to the filesystem we can go ahead and parse it. The aim of

this is to locate the content in the file (for example an embedded Word document), extract it and save it to a

separate file enabling it to be handled and edited as a normal file.

The process of parsing the file is described over the following pages in the order in which they should be

performed.

OPEN THE FILE

We first open the file in binary format using the NotesStream class:

Dim Session As New NotesSession

Dim Stream As NotesStream

Set Stream = Session.CreateStream

If Not Stream.Open("c:\Temp\EXT12345.ole", "binary") Then

 MessageBox "The OLE Compound file could not be opened.", 0+16, "Open Compound File"

 Exit Sub

End If

If Stream.Bytes = 0 Then

 MessageBox "The OLE Compound file has no content.", 0+16, "Open Compound File"

 Exit Sub

End If

READ THE HEADER

The header is the first thing in the file to read (first 512 bytes of the file). This gives us important information

about the structure of the file enabling it be correctly parsed:

• Signature - The first 8 bytes must match specific values to confirm the file is indeed a compound

binary file.

• Version – Let’s us know if the file is version 3 or version 4.

• Byte Order – Indicates the byte order for integer fields (ie. Little-Endian)

• Size of each sector – version 3 sectors are 512 bytes, and version 4 is 4,096 bytes.

• Size of each Mini sector – Normally 64 bytes

• Number of Directory Sectors – The number of directory sectors. Not applicable to version 3 files.

• Number of FAT Sectors – The number of FAT Sectors in the file.

• First Directory Sector Location – The starting sector number for the directory stream.

• Mini Stream Cutoff Size - Specifies the cutoff size for content to be stored in the mini stream. This

is normally 4,096 bytes.

• First Mini FAT Sector Location – The starting sector number for the mini FAT.

• Number of Mini FAT Sectors – The number of mini FAT sectors in the file.

• First DIFAT Sector Location – The starting sector number for the double-indirect file allocation

table.

• Number of DIFAT Sectors – The count of the number of DIFAT sectors in the file.

• DIFAT - An array of 32-bit integer fields contains the first 109 FAT sector locations of the

compound file.

If the file is version 4 we skip over the remaining 3,584 bytes (as all sectors in version 4 are 4.096 bytes in

size and the header only occupies 512 bytes).

The content retrieved for the header in a typical compound file is shown below:

• Signature: must always be - 0xD0, 0xCF, 0x11, 0xE0, 0xA1, 0xB1, 0x1A, 0xE1

• CLSID: must always be - {00000000-0000-0000-0000-000000000000}

• Major version: 3

• Minor version: 62

• Byte order: Little endian

• Sector size: 512

• Mini stream sector size: 64

• Number of FAT sectors: 178

• Number of directory sectors: 0

• First directory sector location: 2

• Transaction signature number: 0

• Mini stream cutoff size: 4,096

• Number of mini FAT sectors: 1

• First mini FAT sector location: 5

• Number of double-indirect file allocation table (DIFAT) sectors: 1

• First DIFAT location: 117

READ ALL SECTORS

After reading the header sector the remaining sectors in the file should now be read. Knowing the size of

each sector (determined by information obtained from the header) we continue reading all bytes in chunks

equivalent to the size of each sector.

For version 3 the sector size is 512 bytes so we continuously read chunks of 512 bytes until we reach the

end of the file. We found it best to use a list element to save each chunk of bytes to. We defined the list

element as a ‘Type’ that can hold the bytes and the key for each list element is the sector number starting

at zero.

Type Sector

 Bytes As Variant

End Type

Dim Sectors List As Sector

Dim NumSectorsFound As Double

Do

 Sectors(NumSectorsFound).Bytes = Stream.Read(SectorSize)

 NumSectorsFound = NumSectorsFound + 1

Loop Until Stream.IsEOS

Call Stream.Close

The key for each list element is the sector number beginning at 0 (zero) where the first sector is the sector

immediately following the header sector.

PARSE DIFAT SECTORS

If the First DIFAT Sector Location in the header is not set to ENDOFCHAIN then we need to iterate over all

DIFAT sectors to retrieve the FAT sector locations which are additional to the first 109 locations that were

obtained from the header.

We start by retrieving the sector specified in the First DIFAT Sector Location in the header. Using the

sector number as the lookup key the sector is obtained from the list element of all sectors (built when all

sectors were read in the previous step). The list of fields in the sector is iterated to get each FAT sector

number which are then added to the original DIFAT array of the first 109 FAT sectors in the header. If the

FAT sector number is set to FREESECT it is ignored and not added to the array.

The final field in a DIFAT sector gives us the sector number of the next DIFAT sector to iterate through. If

the value of the final field is ENDOFCHAIN then there are no more DIFAT sectors remaining, otherwise we

start the process again by looking up that sector in the list element of sectors and iterating through it.

In the example from the Header on the previous page the First DIFAT Sector Location is 117. We retrieve

sector 117 and iterate over the fields the sector which gives us the following values:

Field 0: 116

Field 1: 118

Field 2: 119

Field 3: 120

Field 4: 121

Field 5: FREESECT

.

.

.

Field 127: ENDOFCHAIN

The above information tells us that in addition to the 109 sectors retrieved from the header data is also

contained in sectors 116, 118, 119, 120, and 121. Any field that has a value of ‘FREESECT’ is ignored.

The final field in the sector indicates the next sector to iterate for more DIFAT sectors or ‘ENDOFCHAIN’ if

there are no further sectors that need to be checked.

We now have the full chain of FAT sectors in the compound file to iterate through to retrieve data in the file.

PARSE EACH SECTOR IN THE DIFAT

The DIFAT array contains the list of FAT sectors to iterate through for retrieving the usable data in the

compound file. Any other sectors outside this list can be ignored as they’re not used.

Each element in the DIFAT array contains a sector number so iterating from the beginning of the array to

the end we lookup each sector in the list element built when the whole file was parsed.

We now build a new list element for the entire sector chain and add each of these sectors to it where the

lookup key is an incrementing number starting at zero (0).

RETRIEVE THE DIRECTORY ENTRIES

Each storage object or stream object within a compound file is represented by a directory entry.

The different types of directory entries are:

• Root Storage Object

• Storage Object

• Stream Object

• Unknown or unallocated

The Stream directory entries is what we need to get a pointer to the content to be ultimately extracted from

the compound file.

Each directory entry is 128 bytes in size. The number of possible directory entries per sector is calculated

by dividing the sector size by 128 (ie. number of directory entries will be 4 or 32).

 Most Notes OLE objects have the following directories:

• Root Storage

• Application Class (eg. Word.Document, PowerPoint.Show, xmlfile, etc)

• CompObj

• Package

• Ole10Native

Note: The file will contain either a directory called ‘Package’ or ‘Ole10Native’ but not both.

The first directory entry must always be the Root Storage directory and is the parent for all other directory

entries.

We start parsing the directory entries by retrieving the sector specified in the First Directory Sector Location

value in the file header. Every 128 bytes in this sector represents a directory entry and this is broken down

into the following information:

• Directory Entry Name – the name of the directory entry. (64 bytes)

• Directory Entry Name Length – length of the directory entry name. (2 bytes)

• Object Type – indicates the type of directory entry. (1 byte)

• Color Flag – red / black flag. Used for binary searches. (1 bytes)

• Left Sibling – directory id of the left child in the red / black binary tree. (4 bytes)

• Right Sibling – directory id of the right child in the red / black binary tree. (4 bytes)

• Child Id – directory id of the direct child of the directory entry. (4 bytes)

• CLSID - contains an object / application class GUID, if this entry is for a storage object or root

storage object. For a stream object, this field MUST be set to all zeroes. (16 bytes)

• State Bits - contains the user-defined flags if this entry is for a storage object or root storage

object. (4 bytes)

• Creation Time – contains the creation time for a storage object, or all zeroes to indicate that the

creation time of the storage object was not recorded. (8 bytes)

• Modified Time – contains the modification time for a storage object, or all zeroes to indicate that

the modification time of the storage object was not recorded. (8 bytes)

• Starting Sector Location – contains the first sector location if this is a stream object. For a root

storage object, this field MUST contain the first sector of the mini stream, if the mini stream exists.

For a storage object, this field MUST be set to all zeroes. (4 bytes)

• Stream Size – contains the size of the user-defined data if this is a stream object. For a root

storage object, this field contains the size of the mini stream. For a storage object, this field MUST

be set to all zeroes. (8 bytes)

After reading all directory entries in a sector a check is done to see if the sector contains a pointer to the

next sector to be read. If it does we then read the directory entries in that sector. This is repeated until

there isn’t a pointer to another sector.

The content for the directory entries for a typical compound file is shown below.

Directory 0 name: Root Entry

• Length of name: 22

• Object type: Root Storage

• Color flag: Red

• Left sibling id: None - Unallocated

• Right sibling id: None - Unallocated

• Child id: 1

• CLSID: {00000000-0000-0000-0000-000000000000}

• State bits: 00 00 00 00

• Creation time:

• Modified time: 25/1/2019 12:27:15

• Starting sector location: 6

• Stream size: 960

Directory 1 name: PowerPoint.Show.12

• Length of name: 38

• Object type: Storage

• Color flag: Black

• Left sibling id: None - Unallocated

• Right sibling id: None - Unallocated

• Child id: 3

• CLSID: {CF4F55F4-8F87-4D47-80BB-5808164BB3F8}

• State bits: 00 00 00 00

• Creation time: 25/1/2019 12:27:13

• Modified time: 25/1/2019 12:27:15

• Starting sector location: 0

• Stream size: 0

Directory 2 name: CompObj

• Length of name: 18

• Object type: Stream

• Color flag: Black

• Left sibling id: None - Unallocated

• Right sibling id: 5

• Child id: None - Unallocated

• CLSID: {00000000-0000-0000-0000-000000000000}

• State bits: 00 00 00 00

• Creation time:

• Modified time:

• Starting sector location: 13

• Stream size: 124

Directory 3 name: Package

• Length of name: 16

• Object type: Stream

• Color flag: Black

• Left sibling id: 4

• Right sibling id: 2

• Child id: None - Unallocated

• CLSID: {00000000-0000-0000-0000-000000000000}

• State bits: 00 00 00 00

• Creation time:

• Modified time:

• Starting sector location: 186

• Stream size: 11534803

PARSE THE MINI-FAT SECTORS

If the header contains a location for the first mini-FAT sector we need to retrieve and parse those sectors.

Mini-FAT sectors are essentially the same as normal FAT sectors but since they take up less space they

are more efficient to use for smaller files.

The mini-FAT is used to allocate space in the mini stream. The mini stream is divided into smaller, equal-

length sectors, and the sector size that is used for the mini stream is specified in the header (64 bytes).

The number of sectors in each mini-FAT sector is determined by dividing the standard sector size by the

mini-FAT size. For version 3 this is 512 / 64 resulting in 8, and for version 4 this is 4096 / 64 resulting in 64.

For a version 3 compound file there must be 128 fields in the mini-FAT to fill the 512 byte sector it is

contained in. Therefore the number of fields for each mini-FAT sector is 128 / 8 which is 16.

For a version 4 compound file there must be 1024 fields in the mini-FAT to fill the 4096 byte sector it is

contained in. Therefore the number of fields for each mini-FAT sector is 1024 / 64 which is 16.

We now have the required information to successfully parse the mini-FAT sectors. We iterate each sector

in the mini-FAT and within each we iterate through each field in the sector. This gives us the full chain of

sectors in the FAT containing the data that will be extracted.

EXTRACT THE CONTENT

Having obtained the data for the directories (and the sectors in the FAT / Mini-FAT) we can now go ahead

and extract the content we are after.

There are some rules though about how the data is retrieved from the compound file:

• Only directories which have an object type of ‘Stream’ are referenced for the content. If the name

of the directory though is ‘CompObj’ it is ignored.

• The starting sector number and the size of the content is obtained from the stream directory. If the

size is less than the mini-stream cutoff size (ie. 4,096 bytes) the sector number applies to the Mini-

FAT sector table otherwise it applies to the standard FAT sector table.

• If the directory name is called ‘Ole10Native’ this indicates the OLE file has been stored in the

OLE/1 format. The OLE/1 content requires additional processing after the content has been

retrieved because it basically is a filesystem within a filesystem.

The first thing to check is the size of the stream. If it’s less than the stream cutoff size we need to iterate

through the mini-FAT sector chain for the data otherwise we iterate through the standard FAT sector chain.

Starting at the sector specified as the starting sector location value in the stream directory we retrieve the

data for that sector. Then we lookup the sector chain (or mini-FAT sector chain) for the next sector to

retrieve data from. We keep doing this until the next sector to retrieve data from is set to ENDOFCHAIN.

We also need to keep in mind the stream size specified in the directory and ensure we only retrieve the

specified number of bytes (no more and no less) otherwise we won’t have the complete data package.

We now have all the data for the content to be extracted. If the stream directory name is not called

Ole10Native we can simply write the data directly to the filesystem using the NotesStream class and writing

it as binary data. You’ll be able to then open the file using the application it was originally created with.

If the stream directory name is called Ole10Native we need to perform additional parsing of the data as it’s

stored in OLE/1 format. The structure of the data is as follows:

• Total size – total size of the data stream (4 bytes)

• Flags 1 – unknown flags (2 bytes)

• Label – usually the name of the original file without the directory (read until null character found)

• Filename – full path / filename of the original file (read until null character found)

• Flags 2 – unknown flags (2 bytes)

• Unknown1Length – length of the unknown data in the following field (1 byte)

• Unknown1 – unknown data (#bytes of specified in previous field)

• Unknown2 – unknown bytes (3 bytes)

• Command – usually the path / filename where the file was last edited (read until null character

found)

• Native data size – the size of the actual data to be extracted (4 bytes)

• Native data – the actual data (length of the data is specified in the previous field).

After reading the header and obtaining the native data size we can now retrieve the data content. As

before we can write the data directly to the filesystem using the NotesStream class and writing it as binary

data. The file can be opened using the application it was originally created with.

SUMMARY

That completes all the steps required to parse and extract the content from OLE/1 and OLE/2 objects.

The following pages demonstrate how to use the sample application to perform the above processing and

extract content from OLE objects.

NOTES OLE FILE PARSER SAMPLE APPLICATION

The Notes OLE File Parser sample application demonstrates how to parse various types of OLE objects

which can be found in typical Notes / Domino applications and extract the content from them.

The latest version of the sample application can be downloaded from the AGECOM website at:

https://www.agecom.com.au/OLEFileParser.

The design elements in the application can be copied from the sample into your own applications to assist

with the extraction of OLE objects in those applications. Alternatively you can customize the code in the

sample to perform a direct extraction of OLE objects from your databases.

Each of the design elements are covered below.

USING THE SAMPLE APPLICATION

The sample application contains a number of Notes documents with various types of OLE objects you can

preview and extract.

Before using the application….

Before trying it though you will need to open the ‘Help – Using’ document in the application and save the

Java libraries attached to it to the ‘jvm \ lib \ ext’ folder of your Notes client:

Right-mouse click one of the Java library files and select the Save All option from the popup menu:

Locate and select the ‘jvm \ lib \ ext’ folder under your Notes client installation folder.

These Java libraries are part of the Apache POI project and are used to extract the content from Microsoft

Excel, PowerPoint, and Word files created with Microsoft Office 2003 or earlier. You can find more

information about these libraries on the Apache POI website at: https://poi.apache.org.

After saving the files you must restart your Notes client to load the libraries.

https://www.agecom.com.au/OLEFileParser
https://poi.apache.org/

If the libraries aren’t found when attempting to process the OLE objects the following message is displayed:

Open the application in the Notes client, select one or more documents in the view then click the Extract

Selected Docs button at the top of the view:

Select the target folder to save the extracted OLE objects to and click the Ok button:

After the OLE objects have been extracted for the selected documents a confirmation box will be displayed:

You can now open the selected target folder to view and open the extracted ole objects:

DESIGN ELEMENTS IN THE SAMPLE APPLICATION

The following design elements are used in the processing of OLE objects.

Extract Selected Docs agent

This agent is called when the Extract Selected Docs button is clicked in the view. The agent iterates over

each selected document and performs the following actions:

1. Checks for rich text fields in the document

2. For each rich text field found checks if it contains embedded OLE objects

3. For each embedded OLE object the Process_EmbeddedObject() function is called

4. The Process_EmbeddedObject() function analyses the embedded object and determines which is

the best method to use to extract the content from the object.

5. The following methods available for processing the OLE object are:

o ExtractOLEObjectByDXL – this method uses the NotesDXLExporter class to extract the

content from the OLE object. This is called when the filename of the embedded object

ends with ole (eg. OLE23973.OLE).

o ExtractOLEByApachePOI – this method uses the ApachePOI java libraries to extract the

content. This is typically called for Excel, PowerPoint and Word files created using

Microsoft Office 2003 or earlier.

o ExtractOLEByApplication – this method uses the parent application of the OLE object to

extract and save the content to a file. This is typically called for Access, Publisher, and

Visio files. The parent application must be installed on the machine the code is being run

on.

o ExtractOLEByCFP – this method uses the Compound File Parser script library to extract

the content. The script library operates on the OLE object at the binary level by locating

the usable content in the file and saving it to a file. This method is used for Microsoft

Office 2007 or later files, and any other OLE/2 object stored in the standard compound file

format.

ApachePOI Java Script Library

This script acts as a wrapper class between LotusScript and the ApachePOI java libraries. The main

method in the script library is parseOLEFile and takes the following arguments:

• Filepath of the raw OLE file extracted from the Notes document

• Target filepath to save the extracted content to

• Type of content contained in the OLE file (eg. Excel, Word, etc)

The Java library locates the usable content in the OLE file and then calls the appropriate methods in the

Apache POI java libraries to save the content to the target file.

Common Script Library

This script library contains common variables and functions used by agents and script libraries.

Compound File Parser Script Library

This script library contains the following classes:

• CompoundFileParser Class

This class parses the contents of embedded OLE objects (such as Microsoft Office 2007 or later

objects) and OLENativeStream structures stored in OLE/2 objects.

It also contains functionality to extract the raw OLE object embedded in a Notes document and

save it to the filesystem.

Please see the CompoundFileParser Class below for more information on calling the methods in

this script library.

• DXLFileProcessor Class

This class contains methods to extract the content of OLE/1 objects using the NotesDXLExporter

class. The method to call in the script library is ExtractOLEObjectByDXL and takes the following

arguments:

o NotesDocument – handle to the document containing the embedded OLE object

o ObjectName – name of the OLE object to be processed

o TargetFileName – filepath to save the extracted content to

If the function successfully processes the OLE object it returns the path of the targe filename the

content was extracted to.

COMPOUNDFILEPARSER CLASS

The CompoundFileParser class is the main script library in the sample application and makes the process

of extracting content from OLE objects easy and quick.

The methods to call in the class for extracting and processing OLE objects is explained below. Both OLE/1

and OLE/2 objects are handled in the code.

**

Import the CompoundFileParser script library into the code

**

The first step in using the script library is to add it to your code:

 Use “CompoundFileParser”

**

Declare an instance of the CompoundFileParser class

**

A variable needs to be declared and assigned the class name as its type:

 Dim CFP As CompoundFileParser

**

Get a handle to the Notes document and embedded OLE object

**

Get a handle to the Notes document containing the OLE object then get a handle to the OLE object itself:

 Dim Session As New NotesSession

 Dim Doc As NotesDocument

 Dim BodyItem As NotesRichTextItem

 Dim AttachmentName As String

 Dim OLEFileClass As String

 Dim TargetFileName As String

 Dim TargetFolder As String

 Dim TempFolder As String

 ‘ Get the folder to save temporary files to

 TempFolder = Environ(“Temp”)

 If Instr(1, TempFolder, “/”) > 0 Then

 If Right(TempFolder, 1) <> “/” Then

 TempFolder = TempFolder & “/”

 End If

 Else

 If Right(TempFolder, 1) <> “\” Then

 TempFolder = TempFolder & “\”

 End If

 End If

 Set Doc = Session.DocumentContext

 Set BodyItem = Doc.GetFirstItem(“Body”)

 If Not IsEmpty(BodyItem.EmbeddedObjects) Then

 Forall EmbeddedObject In BodyItem.EmbeddedObjects

 If EmbeddedObject.Type = EMBD_OBJECT Then

 ‘ We now have a handle to the embedded object

 ‘ (additional code here – see following section)

 End If

 End Forall

 End If

**

Process the embedded OLE object

**

This code would normally be included in the above code excerpt where it says ‘additional code here’:

 ‘ Get the name of the embedded object

 If Trim(EmbeddedObject.Source) <> “” Then

 AttachmentName = EmbeddedObject.Source

 Else

 AttachmentName = EmbeddedObject.Name

 End If

 ‘ We ignore objects starting with ‘stg’ as these are part of a series of storage objects which are retrieved through the

 ‘ parent object

 If Lcase(Left(AttachmentName, 3)) <> “stg” Then

 ‘ Get the application class for the object

 OLEFileClass = EmbeddedObject.Class

 ‘ Set the target folder name

 TargetFolder = “C:\Notes\Export\OLEObjects\”

 ‘ Generate the target filename to save the extracted content to

 TargetFileName = TargetFolder & Cstr(Doc.NoteID) & “\” &

Remove_Disallowed_FileChars(GetClassFileName(OLEFileClass, AttachmentName, True))

 ‘ Make sure the filename is unique

 TargetFileName = FileSystemObject.GetUniqueFileName(TargetFileName)

 If Lcase(Right(EmbeddedObject.Name, 4)) = “.ole” Or Lcase(Right(EmbeddedObject.Source, 4)) = “.ole” Then

 ‘ This is an OLE/1 object which can be extracted using DXL

 ‘ Define an instance of the DXLFileProcessor class

 Dim DXLProcessor As DXLFileProcessor

 ‘ Initialize the DXLFileProcessor class object

 Set DXLProcessor = New DXLFileProcessor()

 ‘ Call the method in the DXLFileProcessor class to extract the content from the OLE object

 TargetFileName = DXLProcessor.ExtractOLEObjectByDXL(Doc, EmbeddedObject, TargetFolder)

 Else

 ‘ This is an OLE/2 object

 FilePath = TempFolder & Remove_Disallowed_FileChars(AttachmentName)

 If LCase(Right(FilePath, 4)) <> ".ole" Then

 FilePath = FilePath & ".ole"

 End If

 ' Compound File Parser - 1. Initialize new instance of class

 Set CFP = New CompoundFileParser()

 ' Compound File Parser - 2. Extract the raw embedded OLE object to the filesystem

 FilePath = CFP.ExtractOLEObject(Doc, AttachmentName, FilePath, True)

 If FilePath <> "" Then

 ' OLE Object was successfully extracted

 ' Compound File Parser - 3. Open the extracted ole / compound file

 If CFP.OpenFile(FilePath) Then

 ' Compound File Parser - 4. Parse the contents of the file

 Call CFP.ParseFile()

 If OLEFileClass = "" Then

 ' OLE File class wasn't obtained from the embedded object.

 ' Try to get it from the compound file

 OLEFileClass = CFP.GetOLEFileClass()

 If OLEFileClass <> "" Then

 ' Update the target filename so that it has the correct extension

 TargetFileName = TargetFolder & Remove_Disallowed_FileChars(GetClassFileName(OLEFileClass,

AttachmentName, True))

 TargetFileName = FileSystemObject.GetUniqueFileName(TargetFileName)

 End If

 End If

 ' Compound File Parser - 5. Check if the original filename was retrieved from the ole object

 OLESourceFilename = CFP.GetOLEFileName()

 If OLESourceFilename <> "" Then

 ‘ Original filename was found. Change the target filename to match the original file

 If InStr(1, OLESourceFilename, "\") > 0 Then

 OLESourceFileName = Trim(StrRightBack(OLESourceFileName, "\"))

 End If

 If InStr(1, OLESourceFilename, "/") > 0 Then

 OLESourceFileName = Trim(StrRightBack(OLESourceFileName, "/"))

 End If

 TargetFileName = TargetFolder & Remove_Disallowed_FileChars(GetClassFileName(OLEFileClass,

OLESourceFileName, True))

 ' Make sure the filename is unique

 TargetFileName = FileSystemObject.GetUniqueFileName(TargetFileName)

 End If

 ' Compound File Parser - 5. Extract the usable content from the OLE file and save it

 TargetFileName = CFP.ExtractOLEStream(TargetFileName, False)

 End If

 ' Compound File Parser - 6. Remove the temporary ole file

 Call FileSystemObject.RemoveFile(FilePath)

 End If

 End If

 End If

The end result of running the above code is the content within the embedded ole object has now been

extracted and save to the filesystem. You will be able to open the target file just like any other file and

access the extracted content.

Tip:

If you’d like to see the parsed contents of the OLE object in a format you can easily read you can

make a call to the ‘WriteFileInformation()’ method of the CompoundFileParser class which will

create a text file.

You must first perform the above steps to process and parse the OLE object then call this method

passing it the filename to write the information to.

Example: Call CFP.WriteFileInformation(“c:\Temp\ParsedOLEFile.txt”)

ADDING THE OLE PARSING DESIGN ELEMENTS TO YOUR OWN APPLICATIONS

If you’d like to implement the OLE parsing functionality into your own applications here are the steps to

follow to copy the design elements from the sample application.

1. Agents

Copy the following agents into your application:

• (Extract Selected Documents)

2. Script Libraries

Copy the following script libraries into your application:

• ApachePOI

• Common

• CompoundFileParser

3. Save Apache POI Java Libraries to the jvm \ lib \ ext folder

The ‘Help – Using’ document of the sample application contains the required Apache POI java

libraries. The libraries should be saved to the ‘jvm \ lib \ ext’ folder of your Notes client.

4. Customize the Extract Selected Documents agent

The code in the Extract Selected Documents agent should be reviewed to see if any customizations

are required. Such customization might include:

• Specify a different database to process

• Process all documents in the database rather than just the selected documents

• Change the target location and filenames of extracted OLE content to make it easier to

determine which extracted files belong to which documents

• Add a button to a view in your application to call the (Extracted Selected Documents) agent or

make the agent visible on the Notes Actions menu.

5. Customize the CompoundFileParser Script Library

The converted files saved to the filesystem are prefixed with the value of the ‘Topic’ field of their parent

documents. To use another field value for the prefix in the documents being processed change the

following constant value in the Declarations section to the appropriate field:

Const TITLE_FIELD = "Topic"

If you don’t want to prefix the filenames you can set this to a bank value:

Const TITLE_FIELD = ""

KNOWN ISSUES

Some older and proprietary OLE objects created with Microsoft Office 2003 or earlier cannot be

successfully extracted without the original application installed. These include: Microsoft Access

databases, Excel spreadsheets, Publisher files.

All versions of Microsoft Visio require the original application to be installed.

If you are intending to extract any of the above files / versions you will need to ensure the required

application has been installed.

Embedded Microsoft Photo Editor objects could have any of the following file extensions: bmp, gif, jpg, pcx,

png, and tif. The default file extension in the Common script library has been set to ‘tif’. There has been

mixed success with the processing of these objects so it is recommended you review each extracted file.

You may need to save these objects manually to the filesystem from the Notes documents they are

contained in.

	Introduction
	About the Author
	Notes OLE Objects
	How OLE Objects are Stored in Notes
	OLE/1 Objects
	OLE/2 Objects

	The Structure of an OLE/2 Object
	Header sector
	DIFAT Sector Chain
	FAT Sector Chain
	Directory Sector Chain
	Mini FAT Sector Chain
	User Defined Data Chains
	Summary

	Extracting an OLE/1 object
	Extracting an OLE/2 object
	Special Values in the Compound File
	Parsing the OLE/2 File
	Open the File
	Read the header
	Read All Sectors
	Parse DIFAT Sectors
	Parse each Sector in the DIFAT
	Retrieve the Directory Entries
	Parse the Mini-FAT Sectors
	Extract the Content

	Summary
	Notes OLE File Parser Sample Application
	Using the Sample Application
	Design Elements in the Sample Application
	CompoundFileParser Class

	Adding the OLE Parsing design elements to your own applications
	Known Issues

